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ABSTRACT 
A finite-difference scheme is developed for solving the boundary layer equations governing the unsteady 
laminar free convection flow in open ended vertical concentric annuli. The initial condition considered 
for the creation of the thermal transient corresponds to a step change in temperature at the inner annulus 
boundary while the outer wall is maintained adiabatic. Numerical results for a fluid of Pr = 0.7 in an 
annulus of radius ratio 0.5 are presented. The results show the developing velocity and pressure fields 
with respect to space and time. Also, the important relationship between the annulus height and the 
induced flow rate is presented for various values of the time parameter starting from quiescence to the 
final steady state. 
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NOMENCLATURE 

a local heat transfer coefficient based on area of heat transfer surface [ = q/(Tw — T0)] 
average heat transfer coefficient over the annulus height [ = πDwl(Tw — T0) = 
∫1o adz/l] 

b annular gap width ( = r2 — r1) 
Cp specific heat of fluid at constant pressure 
D equivalent (hydraulic) diameter of annulus ( = 2b) 
Dw diameter of heat transfer boundary (=2r1) 
f volumetric flow rate [ = ∫r2r1 2πru dr = π(r22 — r21)u0 

fss steady state (independent of time) value of [ = ∫r2r1 2πruss dr = (r22 — r21)uoss 

F dimensionless volumetric flow rate [ = f/πlvGr* = (1 — N2)U0] 
Fss steady-state value of F [ = (1 - N2)Uoss] 
Ffd steady-state fully-developed value of F 
g gravitational body force per unit mass (acceleration) 
Gr Grash of number [ = gβ(Tw - T0)D3/v2] 
Gr* modified Grash of number ( = DGr/l) 
h heat gained by fluid from the entrance up to a particular elevation in the annulus 

[ = ρofC p (Tm -T o )] 
h heat gained by fluid from the entrance up to the annulus exit, i.e., value of h at z = l 

C=ρofCp( - T 0 ) ] 
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H dimensionless heat absorbed from the entrance up to any particular elevation = 
h/[πρ0CplvGr*(Tw - To)] = Fθm = 2∫1N URθdR 
dimensionless heat absorbed from the entrance up to the annulus exit, i.e., value of 
H at z = l{ = [πρ0CplvGr*(Tw - To)]= = 2∫1N URθdR} 
steady-state fully-developed value of H 

K number of time increments needed to reach steady-state conditions 
l height of annulus 
L dimensionless height of annulus (= 1/Gr*) 
m number of axial steps in the numerical grid 
n number of radial increments in the numerical grid 
N annulus radius ratio (= r1/r2) 
Nu local Nusselt number (= aD/K) 

average Nusselt number based on the area of the heat transfer surface over the whole 
annulus height (= D/K) 

p pressure of fluid inside the channel at any cross-section 
p' pressure defect at any point (= p — ps) 
p0 pressure of fluid at the annulus entrance (= — ρ0u20/2) 
ps hydrostatic pressure (=—ρogz) 
P dimensionless pressure defect at any point (= p'r42/ρol2v2Gr*2) 
P0 dimensionless pressure defect at annulus entrance ( = p0r42/ρ0l2v2Gr*2 = —U2O/2) 
Pr Prandtl number (= µCP/K) 
q heat flux at the heat transfer surface [ = —K(∂T/∂r)w] 
r radial coordinate 
r1 inner radius of annulus 
r 2 outer radius of annulus 
R dimensionless radial coordinate ( = r/r2) 
Ra Rayleigh number ( = GrPr) 
Ra* modified Rayleigh number ( = Gr*Pr) 
t dimensionless t ime ( = Tv/r22) 
tss dimensionless steady-state t ime ( = Tssv/r22) 
T fluid temperature at any point 
Tad adiabatic wall temperature 
Tm mixing cup temperature over any cross-section = ∫r2r1 rut d r / ∫ r 2 r 1 ru dr 

mixing cup temperature at exit cross-section, i.e., value of Tm a t z = l 
T0 fluid temperature at annulus entrance 
Tw temperature of the heat transfer boundary 
u axial velocity component at any point 
w s s steady-state ( independent of t ime) value of the axial velocity component at any point 
u0 entrance axial velocity = ∫r2r1 2nru d r / [ π ( r 2 2 — r21)] 
U dimensionless axial velocity componen t ( = ur22/lvGr*) 
U0 dimensionless axial velocity a t entrance ( = u0r22/lvGr*) 
Uofd steady-state fully-developed of U0 
Uoss steady-state value of U0 ( = uossr22/lvGr*) 
v radial velocity component at any point 
V dimensionless radial velocity component (vr2/v) 
z axial coordinate 
Z dimensionless axial coordinate ( = z/lGr*) 
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Greek symbols 
β volumetric coefficient and thermal expansion 
v kinematic viscosity of fluid ( = µ/ρ0) 
µ dynamic viscosity of fluid 
K thermal conductivity of fluid 
ρ fluid density at temperature T { = ρ 0 [ l - β(T - T0)]} 
ρ0 fluid density at inlet fluid temperature T0 
T time 
TSS steady-state time 
θ dimensionless temperature at any point [ = ( T — T0)/(Tw — T0)] 
θad dimensionless adiabatic wall temperature at any height [ = (Tad — T 0 ) / (T w — T0)] 
θm dimensionless mixing cup temperature at any cross-section [ = (Tm — T0)/(Tw — T0)] 

dimensionless mixing cup temperature at exit cross-section, i.e., value of θm at z = l 
θfd steady-state fully-developed value of θ 
θSS steady-state value of θ 

INTRODUCTION 
In many practical engineering applications, the convective flow of most interest in a channel of 
any geometrical shape may consist mainly of transient or unsteady state. Also, unsteady natural 
convection heat transfer is of great importance in the design of control systems for modern 
free convection heat exchange devices. Moreover, processes which require the evaluation of the 
performance of thermal equipment in the unsteady free convection regime include start-up, 
shut-down, pump failure, etc. Despite the importance of the unsteady natural-convection heat 
transfer encountered in many engineering systems and applications, it has not received as much 
attention as its steady-state counterpart. 

Because of its relative simplicity, the unsteady laminar free convection in the vicinity of a 
vertical flat plate has received almost exclusive attention of early analyses1-9. Transients in these 
analyses were created by a step change in wall temperature or wall heat flux. Nanda and 
Sharma10 and Yang et al.11 investigated the same case but with oscillatory surface temperature. 
Recently, Haq et al.12 numerically investigated the case of transient free convection of a 
non-Newtonian fluid along a vertical flat plate. Analytical and experimental investigations related 
to transient free convection heat transfer on vertical surfaces and in vertical cylinders have been 
reviewed by Ede13 and Hess and Miller14, respectively. 

Natural convection in confined fluids is of greater practical interest. For example, natural 
convection in a vertical channel formed by two parallel plates is encountered in many engineering 
applications including the cooling of electronic equipment and the heating of buildings via Trombe 
walls. Kettleborough15 considered the transient laminar free convection between two suddenly 
heated vertical parallel plates at the same constant temperature. Lee et al.16 investigated 
numerically and experimentally the unsteady natural convection heat and mass transfer in the 
parallel plate vertical channel but with asymmetric boundary conditions. 

The present investigation is concerned with transient natural convection heat transfer in 
open-ended vertical concentric annuli. Important applications for such a problem may be found 
in double-pipe heat exchangers and in the transient natural convection which takes place around 
the fuel elements of a nuclear reactor during shut-off periods. A survey of the literature shows 
that transient natural convection in open-ended vertical annular passages has not yet been 
investigated analytically or experimentally. Only steady-state natural convection in vertical 
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annular passages has been considered in the literature17-19. The steady-state (with respect to 
time) solutions are of particular interest to the present investigation since a complete transient 
solution is obtained with the steady-state solution approached as the limiting solution for long 
times. 

The lack of either theoretical or experimental data concerning unsteady natural convection 
in vertical concentric annuli, motivated the present investigation. In the present study, an iterative 
finite-difference scheme has been developed for solving the coupled conservation equations of 
mass, momentum, and energy which govern the transient laminar free convection flow in 
open-ended vertical annular passages. The developed finite-difference scheme and numerical 
method of solution can be considered as an indirect extension of the original work of Bodoia 
and Osterle20 to include the case of transient free convection heat transfer. The initial condition, 
which creates the thermal transient, considered in the present investigation corresponds to a 
step change in the temperature of the inner wall of the annulus while its outer wall is kept adiabatic. 

GOVERNING CONSERVATION EQUATIONS 
Consider a vertical open-ended concentric annulus of a length l, open at both ends, immersed 
in a Newtonian fluid of infinite extent maintained at a constant temperature T0. Initially, at 
time T = 0, the annulus inner and outer walls are in thermal equilibrium with the surrounding 
air inside and outside the annular passage (at same temperature T0). At time T > 0, let the inner 
wall of the annulus be suddenly heated to a temperature greater than that of the surrounding 
fluid while the other wall is insulated. The fluid in the annular gap between the two cylindrical 
walls is suddenly set into motion by temperature-induced buoyancy forces. Fluid rises in the 
annular gap and is assumed to enter the channel at the ambient temperature T0 with a uniform 
velocity u0 which is changing with time. Figures la-lc depict the geometry, coordinate system, 
and the finite-difference grid used. The fluid has constant physical properties but obeys the 
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Boussinesq approximation, according to which its density is constant except in the buoyancy 
term of the vertical (axial) momentum equation. Axial symmetry and laminar flow conditions 
are assumed. Both viscous dissipation and axial conduction of heat are neglected. Further, 
applying the boundary-layer assumptions, which are valid when inertial forces are large relative 
to viscous forces, and using the dimensionless parameters given in the nomenclature, the motion 
and heat transfer are described by the solution of the following coupled dimensionless boundary 
layer equations. 

These three coupled equations (l)-(3) are subject to the following initial conditions. For t = 0, 
U = V = θ = 0 everywhere. On the other hand, for t > 0, the following boundary conditions 
are applicable: 

Z = 0 and N < R < 1:V = θ = 0,U =U0,and P = P0 = — U20/2, where U0 is a function of time t 
Z ≥ 0 and R = N:U = V = 0 and θ = l 

(4) Z≥0 and R=1:U=V = 0 and ∂θ/∂R = 0 
Z = L,P = 0 

It is noteworthy that the radial momentum equation has been dropped due to the 
boundary-layer assumptions. However, it is possible, under the linearized finite-difference scheme 
of Bodoia and Osterle20, to compensate for the lack of such an equation by using the following 
dimensionless integral continuity equation 

FINITE-DIFFERENCE EQUATIONS AND SOLUTION METHOD 

Due to symmetry about the z-axis, only half of the channel has to be considered. A 
three-dimensional grid in R, Z and t has to be imposed on half of the annular passage. The 
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rectangular grid shown in Figure 1b is in the R-Z plane and it may be used to depict the 
solution at a given time t. For each other value of time, say t + Δt, there is another grid exactly 
similar to that shown in Figure lb but lies in a plane parallel to it. The non-dimensional time 
(t) is simulated by a third coordinate normal to the R-Z plane as shown in Figure 1c. A typical 
mesh point is designated by three integer variables (i,j and k), with i progressing in the radial 
direction, i = 1 at the inner wall, i = n + 1 at the outer wall (n = number of radial increments 
in the mesh network),j progressing in the axial direction, j = 1 at the inlet cross-section, j = m + 1 
at the exit cross-section (Z = L), m = number of axial increments in the mesh network 
(m = L/ΔZ), k progressing in the hypothetical time direction, k = 1 at the initial state, and 
k = K + 1 at the final chosen value of time (K = number of time increments which is chosen 
such that steady-state conditions are achieved). The dependent variables are designated as point 
functions with subscripts (i,j,k). 

By an indirect extention of the work of Bodoia and Osterle20, (l)-(3) and (5) can be written 
in the following finite-difference forms, respectively: 

In the above implicit finite-difference equations (6)-(8), backward differences are used to 
replace the first derivatives with respect to+ time and axial distance (∂/∂t and ∂/∂z), central 
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differences are used to replace the first derivatives with respect to the radial coordinate (∂/∂R), 
and a conventional three-point difference is used to replace the second derivative with respect 
to R(∂2/∂R2). In either (7) or (8), two levels of time are present and designated by k and k + 1; 
the variables with subscript k + 1 represent unknowns and those with subscript k are knowns. 
Similarly, for a given time (i.e., value of k) the variables with subscript j + 1 represent unknowns 
and those with subscript j are knowns. Also, applying numerical stability theories21 shows 
that the finite-difference equations (6)-(8) are consistent representations of the boundary-layer 
equations (l)-(3) and are stable for all mesh sizes as long as the downstream axial velocity is 
non-negative (i.e., there are no flow reversals within the domain of solution). 

For a given fluid (i.e., a special value of Pr) in an annulus of given N and L, the numerical 
solution is obtained by first assuming a value of U0. This is equivalent to either assuming the 
flow rate F or the inlet pressure P0 since the former and the latter are linked to U0 through 
(5) and (4), respectively. Then starting with k = 1 (i.e., a time step Δt) and applying (8) with 
j = 1 (annulus entrance cross-section) and i = 2,3,...,n + 1 (taking into account that, according 
to the boundary conditions (4), θn+2,j,k = θn,j,k),we get n simultaneous linear algebraic equations 
which when solved (e.g., by Thomas' method22) give the values of the n unknown temperatures 
at all points of the second cross-section (θ2,2,2,θ3,2,2,...,θn,2,2 and θn+1,2,2). Now, applying (7) 
with i = 2,3 n and (9) to the entire cross-section we obtain n equations which when solved 
(e.g., by a special form of Gauss-Jordan elimination scheme21) give the values of the n unknowns 
(U2,2,2, U3,2,2, U4,2,2,... Un,2,2 and P2,2) at all points of the second cross-section. Using the 
computed values of U's and applying (6) we get the values of V's at all points of the second 
cross-section. Keeping k = 1 and repeating this procedure (j = 2,3,...,m), we advance section 
by section along the annulus until the final cross-section (j = m + 1) is reached and its pressure 
value is obtained (Pm+1,2). If this obtained pressure value is zero (within an acceptable tolerance) 
the assumed value of U0 is correct, otherwise a new value should be tried and the whole process 
is repeated. The acceptable tolerance in Pm+1,2 (pressure at exit cross-section) may be an 
arbitrarily chosen value below which the obtained numerical results become practically unaffected. 
In the present investigation the tolerance in Pm+1,k is taken as ±10 -15. 

Having obtained the accurate value of U0 (for which Pm+1,2 = 0), this is the solution value 
of U0 at t = Δt and the corresponding obtained values of T's, U's, P's, and V's represent the 
required numerical solution of this particular time (t = Δt). Now, we can advance other steps 
in the time domain by repeating the aforesaid whole process with k = 2,3,4,... until steady-state 
conditions (with respect to time) are achieved. Steady-state conditions mean that the obtained 
values of T's, U's, P's and V's would not change with further increase in the value of time 
(i.e., with further increase in the value of the counter k). Of course, this latter statement is 
applicable in a computer program with an arbitrarily chosen acceptable tolerance. In the present 
investigation, it was considered that steady-state conditions are reached when the variation in 
the value of the overall heat absorbed by the fluid inside the annulus does not exceed an 
absolute value of 0.001% with further increase in time [i.e., ≤±10 - 6] . 

In fact, there is nothing new in the chosen conventional finite-difference approximations in 
(6) to (9). However, the chosen finite-difference approximations are not of the same form in all 
the equations. This has been deliberately done so as to insure stability of the numerical solution 
and to enable the equations to be solved in the previously mentioned manner. Moreover, in 
practice, for a confined free convection flow, such as that given under consideration, the channel 
height is normally known (i.e., L is given) while the volumetric flow rate f (hence F) is unknown. 
The numerical method of solution for steady-state cases17,18 differs from the present method of 
solution as follows. The steady-state method of solution17,18 handles the problem in a reversed 
manner by obtaining an unknown channel height for a given volumetric flow rate. On the other 
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hand, the present numerical method of solution iteratively obtain the unknown transient flow 
rate (as a function of time) for a given annulus height. 

It may be worth reporting examples of the grid sizes used in the present investigation. The 
axial and time increments, for both cases (I) and (O), were as follows. For Gr* = 105: 
ΔZ = 2 x 1 0 - 7 and Δt = 10 - 3; for Gr* = 104: ΔZ = 2 x l 0 - 6 and Δ t = l 0 - 3 , and for 
Gr* = 103: ΔZ = 2 x 10 - 5 and Δt = 5 x 10 -3. The number of radial increments was 40 in all 
the computer runs. 

RESULTS AND DISCUSSION 
Computations were carried out for a fluid of Pr = 0.7 in an annulus of N = 0.5. The radius ratio 
0.5 was chosen since it represents a typical annular geometry with its value of N far enough 
from unity (N = 1) which represents the case of a parallel plate channel. Moreover, steady-state 
developing solutions for this particular radius ratio are available in the literature17. Such 
steady-state solutions provide a mean to check the adequacy of the transient solutions to be 
obtained in the present investigation. The transient solutions should asymptotically approach 
these steady-state solutions. 

It is important to mention that the present thermal boundary conditions give, in a sufficiently 
high annulus, a steady-state solution (at large values of t) which approaches (at large values of 
Z) the fully-developed solution of the third kind19. For this particular limiting case the analytical 
steady-state fully-developed solution is available19 and accordingly the upper limiting values of 
the steady-state dimensionless volumetric flow rate (F) and the dimensionless heat absorbed by 
the fluid over the entire channel height are equal and given in the annulus under consideration 
(N = 0.5), by: 

From (10) the corresponding upper-limiting steady-state values of U0 and P0 (Uofd and Pofd) 
are 0.0209973 and -2.2044414 x 10 -4, respectively. 

Equation (10) merely states that it is impossible, in a purely laminar natural convection regime 
through a vertical annulus of N = 0.5 with an isothermal boundary, to have a dimensionless 
volumetric flow rate (F) greater than 0.015748, otherwise there must be an external force aiding 
the buoyancy driving force. In other words, the steady-state dimensionless volumetric flow rate 
(F) reaches an upper asymptotic value as the annulus height approaches infinity. This means 
that, in an annulus with an isothermal boundary, when the channel becomes sufficiently high 
so that the steady-state flow reaches its state of full development, a further increase in the channel 
height would not produce any further increase in the sucked steady volumetric flow rate. Such 
a special characteristic of free convection flows in channels with an isothermal boundary guides 
the choice of the values of U0 (i.e., U0 < Uoss < Uofd hence F < Fss< Ffd). In the present 
investigation, values of the dimensionless channel height L (i.e., values of Gr*) were selected to 
give a wide range of steady-state dimensionless flow rates (Fss) which approaches its fully 
developed value Ffd. The investigated values of L range from 10 - 5 to 0.25; thus the investigated 
range of modified Grashof number (Gr*) is 4 ≤ Gr* ≤ 105. On the other hand, the accuracy of 
the present computer code was tested by the excellent agreement which was achieved between 
the present steady-state solutions (obtained at considerably large values of time) and the existing 
numerical and analytical solutions reported by one of the authors in two previous papers17,19. 

Due to space limitations, only a representative sample of the results will be presented here. 
For the understanding of the physics of the problem under consideration, these results will 
include the developing transient axial velocity, radial velocity, and temperature profiles. On the 
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other hand, the results also include the time variations, along the channel, of the pressure 
distribution, the adiabatic wall temperature, the mixing cup temperature or the heat absorbed 
by the fluid, and the F-L relationship since these are more important to thermal and control 
engineers than the temperature and velocity profiles. Also, the variation of the steady-state time 
(tss) with the channel height (L) will be given. 

Figure 2 gives the developing axial velocity profiles with time at mid-channel height for a 
value of Gr* = 4 (L = 0.25). So, this Figure is for a very small value of Gr* which means a long 
annulus with a small hydraulic diameter and a low temperature difference. Therefore, it is 
expected, in such a case, that the velocity profile will approach the fully developed profile at the 
annulus exit. Comparing the velocity profile corresponding to the largest value of time (t) in 
this Figure with the available fully developed solution of the third kind19, it can be seen that 
the flow has almost reached its stage of full development, even though it is still at mid-channel 
height. This means that for larger values of Z and/or t the axial velocity profile remains almost 
unchangeable. On the other hand, this comparison provided an excellent check on the adequacy 
of the present numerical results. 

Another interesting observation from Figure 2 is that at early times the axial velocity profiles 
have their peaks very close to the heated boundary. As the time increases the peak moves from 
the heated boundary towards the adiabatic boundary and approaches asymptotically its 
fully-developed radial location. This behaviour of the axial velocity profiles is indeed a 
consequence of the thermal boundary layer developing, with respect to both time and space, on 
the heated boundary. As the time increases the thermal boundary layer penetrates further into 
the fluid far from the heated wall. Thus, for a given axial position, as the time increases the 
buoyancy driving force is created in new regions far from the heated boundary and its value 
increases in old regions in which it was previously present. Therefore, the value of the axial 
velocity increases and its peak moves towards the unheated boundary as the time increases. 

Figure 3 gives the mid-height temperature profiles corresponding to Gr* = 4 for various 
selected values of the dimensionless time t. This Figure clarifies how the heat penetrates, as the 
time passes, into fluid regions far from the isothermal heated boundary. Moreover, at the largest 
time value presented in either Figure the temperature of the fluid all over the annular gab has 
become equal to the heated wall temperature. Thus the fluid at this particular time and location 
has reached its steady (with respect to time) fully developed (with respect to axial distance) 
state. This clarifies why the axial velocity profiles, shown in Figure 2, become at large times, 
identical to the steady-state fully-developed profiles given in Reference 19. 
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Decreasing the annulus height to L = 0.01 (i.e., increasing the value of Gr* to 100), unpresented 
results show the same previously mentioned characteristics of U and θ profiles. However, the 
flow reaches the annulus top exit without being fully developed (θ < 1 and U ≠ Ufd) at 
steady-state (sufficiently large values of t). To clarify this point, Figure 4 gives examples of the 
mid-height radial velocity profiles at various selected values of the time t. Positive values of V 
mean that V is in the radial direction (from the inner wall to the outer wall) and vice versa. 
When the steady-state flow reaches full development V must equal zero everywhere in the annular 
gab. As can be seen from this Figure, at the largest value of time presented in the Figure, the 
radial velocity component has not decayed to its full development zero value. Figure 4 also 
shows that, for the given axial location (mid-height), the radial velocity always transports fluid 
from regions close to the heated boundary towards the opposite adiabatic boundary and that 
its value increases as the time passes. This, together with the principle of continuity, clarify the 
previously mentioned behaviour concerning the motion of the peaks of the U profiles from 
regions near to the heated boundary towards the adiabatic boundary as the time elapses. 

Now, decreasing the annulus height to L = 0.001 (i.e., increasing Gr* to 1000) we obtain the 
same behaviour of the unsteady state U profiles but the steady-state profile deviates more from 
the fully developed profile. This is because the steady state temperature profiles do not reach 
the full development value (θfd= 1) as clarified by the profiles corresponding to the largest value 
of t in Figure 5a. With larger values of Gr*, the phenomenon of temperature overshoot starts 
to appear as may be observed from Figure 5b. In this Figure, the temperature profiles 
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corresponding to t = 14 x 10 -3and t = 2 x 10 - 2 overshoot the steady-state temperature profile 
at t = 74 x 10 -3. Such a phenomenon is known in transient heat transfer regimes6. Other 
unpresented results and also Figure 5b shows that this phenomenon becomes more pronounced 
as the value of Gr* further increases (i.e., L further decreases, thus having a small value of 
dimensionless flow rate in a short annulus with a large hydraulic diameter and a large temperature 
difference). The profiles shown in Figure 5b also indicate that, at large values of Gr*, the 
temperature step signal is felt only in regions close to the heat transfer surface. This type 
of temperature distribution is akin to that about a single vertical plate or cylinder in free 
convection. 

It is worth mentioning that at sufficiently large values of Gr* there exists a probability of flow 
reversals near the adiabatic wall. This prediction can be physically attributed to the fact that, 
when Gr* becomes sufficiently large, the fluid accelerates near the heated boundary and, due to 
the continuity principle, it decelerates near the opposite insulated wall. Before the occurrence 
of a flow reversal, the axial velocity gradient normal to the adiabatic wall vanishes 
(∂u/∂R|wall = 0). With a reversed flow, the slope of the axial velocity profile at the adiabatic 
wall becomes negative, values of U near this wall become also negative, the boundary layer flow 
model is unsuitable, and the numerical stability of the present finite-difference scheme becomes 
uncertain. This prediction has been confirmed at Gr* = 105 as shown in Figure 6. In this Figure 
the axial velocity profiles have negative values near the adiabatic wall. However, at large values 
of time (t) the profiles could recover at this particular height. It is important to point out that, 
for a given time, if a flow reversal occurs at a given axial location it is anticipated that it continues 
downstream (at locations of larger heights). The present numerical scheme was able to continue 
the solution in some cases with flow reversals, as those shown in Figure 6, even though the 
condition for numerical stability (U ≥ 0, i.e., non-negative U) is not satisfied in such cases. 
However, with values of Gr* larger than this given in Figure 6, numerical instability occurred 
and solutions could not be obtained. Thus, even though numerical stability theories when applied 
to the present finite-difference scheme necessitate positive values for the axial velocity allover 
the domain of solution (i.e., no flow reversal), the computer program succeeded in obtaining 
numerical solutions for some cases where the reversed flow is small, as shown in Figures 5b 
and 6 for Gr* = 105. However, one should bear in mind that the present boundary-layer model 
is not suitable for describing cases with flow reversals as large normal (radial) velocities exist 
near the flow reversal region and hence the accuracy of the boundary-layer approximations 
becomes questionable in this particular region. 
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Examples of the time-variations of the dimensionless pressure defect P along the channel are 
shown in Figure 7. Each curve corresponding to a given value of time is a typical pressure 
distribution in confined free convection channel flows. For a given time, the dimensionless 
pressure defect starts, at the annulus entrance, with a value which, according to Bernoulli's 
equation, equals to —U2/0/2. Then the pressure decreases with Z until a minimum value is 
attained. In the region from the entrance until the cross-section at which P reaches its minimum 
value the fluid friction is larger than the buoyancy driving force and therefore the pressure 
decreases. However, as Z increases the buoyancy driving force develops and becomes larger 
than the fluid friction and the pressure defect therefore increases until it equals zero at the exit 
cross-section. As the time elapses, similar pressure defect distributions along the channel are 
obtained, but with lower values of pressure as a consequence of the increase in velocity values 
with time. 

As stated before, thermal and control engineers are more interested in the mixing cup 
temperature and the adiabatic wall temperature. The practical importance of θm derives from 
the fact that it can be easily used to determine the heat gained by the fluid (H) without need 
of computing the temperature gradient at the heated boundary to get the local heat transfer 
coefficient (a) (from which Nu can be obtained), and then integrating to obtain the average heat 
transfer coefficient, (from which can be obtained). Samples of the variation of θm with 
respect to time and axial distance (from entrance) are shown in Figure 8 while samples of the 
corresponding variation of the adiabatic wall temperature are given in Figure 9. As can be 
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seen from these Figures, at early times and near to the entrance θm and θad decrease with time; 
this is attributed to the temperature overshoot phenomenon which has been mentioned before. 
However, as the time increases the behaviours of θm and θad return to normal, i.e., they increase 
as the time increases. The early behaviour of θm means that the heat transfer coefficient drops, 
at early times (conduction time) and near the entrance, to values lower than its steady-state 
values then it recovers and increases to its steady-state value. Again such a phenomenon is 
known in the transient free convection literature6. 

It is very important, in engineering and control applications, to know the time variation of 
the sucked volumetric flow rate in a given annulus and also the time required to reach the 
steady-state conditions. Figures 10 and 11 give the variation of F for small and large values of 
L, respectively. These curves together with the corresponding curves for θm can be used to obtain 
the time variation of H (since H = Fθm) for different annuli heights. Figure 12 presents a sample 
of such results while Figure 13 gives the steady-state time (tss) versus L. Finally, it is worth 
mentioning that a second check on the adequacy of the present numerical results was done by 
comparing the obtained steady results with those available in the literature17 and excellent 
agreement was always found. 

CONCLUSIONS 
A finite-difference scheme has been developed to solve the boundary-layer equations governing 
the unsteady developing free convection in vertical open-ended concentric annuli. Obtained 
numerical solutions clarified the mechanism of development of both velocity and temperature 
fields with respect to time and space. The initial condition for creating the transient which has 
been considered corresponds to a step change in the inner wall temperature while the opposite 
wall is kept adiabatic. Reversed flows were observed at considerably large values of Gr*. 
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